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Abstract - This paper continues our investigation of 
genetic pre-distortion algorithms to power amplifier (PA) 
linearization. In previous work, we reported simulation 
results of an adaptive algorithm that requires only a 
measure of out-of-band emission. Compared to traditional 
algorithms that require wideband feedback, the proposed 
algorithm is implemented using narrowband feedback, 
affording a large east savings in ADC components. In our 
current work we apply the genetic algorithm to a 
laboratory PA and present linearization results in temw 
of adjacent and alternate channel leakage ratio (ACLR) 
and efftciency improvement. 

I. INTRODUCTION 

Power amplifiers are one of the most expensive and 
power-consuming components in a 3G basestation. 
They are inherently nonlinear and, when operated near 
saturation, cause intermodulation products that distort 
adjacent and alternate channels. This distortion, cw 
ACLR, is strictly limited by FCC and ETSI regulations 
as specified in [l]. 

PAS in the field today are predominantly linearized 
by some form of feed-forward technology. Only in 
recent years has the interest in digital pre-distortion 
been substantial. Digital implementations now show 
higher efficiency at lower cost with greater pre- 
distortion bandwidths than traditional feed-forward 
techniques. 

In this paper, we revisit the genetic algorithm 
introduced in [2] to linearize a laboratory PA during 
transmission of a multi-carrier CDMA2000 waveform 
centered at 881MHz using narrowband feedback. 
Linearization is achieved through the adaptation of a 
look-up table (LUT) in which we use polynomial 
functions to correct for amplitude and phase, as in [3]. 
We will show that our low-cost implementation is able 
to improve ACLR by approximately 15dB, thus 
meeting the 3GPP specification. 

The paper is organized as follows. Section 1 is an 
introduction. Section 2 presents linearization 
fundamentals emphasizing a digital pre-distortion 
technique. Section 3 introduces the genetic algorithm 
adaptation process. Section 4 describes a hardware 

architecture and presents laboratory results. A summary 
is given in section 5. 

II. LINEARIZATION FUNDAMENTALS 

In this section, we present some fundamental 
principles of digital pre-distortion, particularly the 
methods used to.linearize a PA. Current linearization 
techniques employ feedforward pre-distortion to meet 
ACLR requirements. Technology advances have made 
it possible to use digital feedback as an alternate 
technique providing higher efficiency at a lower cost. 
Figure 1 shows an example of state-of-the-art digital 
feedback compensation. This architecture uses Intersil’s 
digital pre-distorter (PD) employing a technique similar 
to that proposed by Faulkner in [4]. Faulkner’s 
algorithm requires a sample-by-sample comparison 
between the PD input and PA output, significantly 
driving up the cost of the ADC located in the feedback 
path. The algorithm that we propose in this paper 
requires only a measure of the power in the out-of-band 
emissions, thereby substantially reducing the ADC 
reauirements. 

Fig. 1. State-of-the-art digital pre-distortion using IX5239 
wideband feedback architecture. 

For cur implementation, we will consider the 
linearization of power amplifiers that can be modeled 
by a memoryless nonlinearity. The input-output block 
diagram used to represent a PA is shown in Figure 2, 
where v,(t) and v,(t) represent the input and output 
signals respectively. The complex baseband model.of 
our PA output is expressed as: 

t&(t) = g (I”.@)l’) v‘(t) = g,, (lv<(t)l’) &*o”*(‘)l’)“‘(t) (1) 
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where g, (Iv,(t)l) and gf (Iv,(t)l) are the amplifier’s 
amplitude and phase characteristics. 

vi(t) 
-ix 

d.1 4) 

Fig. 2. Power amplifier input-output diagram. 

A PD preceding the amplifier is used to apply 
cofrectlon to achieve lmear operation, which can be 
broken down into amplitude and phase correction. 
When the PA is operating in the linear mode, the PD 
does not apply correction. In the nonlinear range, the 
PD applies gain to either amplify or attenuate the input 
signal and the appropriate phase shift to correct for 
offsets. Figure 3 shows the PD-PA block diagram 
where v,,(t) is the PD output. The PA output is now 
expressed as follows: 

The genetic algorithm described next attempts to 
identify a function that minimizes spectra1 regrowth in 
the adjacent and alternate channels. 

Fig. 3. Pre-distorter and power amplifier input-output 
diagram. 

III. GENETIC ALGORITHMS 

The genetic algorithm used for our application 
creates polynomial PD function of the form: 

Where 

m4~V, = (4 + &i,)lw@)l + 
G + GMt)l’ + (4 + mw(t)le (5) 

The GA proposed above uses polynomial functions, 
however the technique is not limited to polynomials but 

can be applied using a number of parameterized 
models. The nominal or bar coefficients lQ,CJ) define 
the center of the search space while the delta or tilde 
coefficients iQ.cJl define the range of the search space. 
The values of the nominal coeffKents were defined in 
[2] as being initialized in the neighborhood of the 
expected solution. Figure 4 shows the overall search 
space of the GA. Figures 4(a) and 4(b) show w that the 
PD solution may have up to 6.5 dB of amplitude 
expansion and 30 degrees of phase shift respectively. 

(8, Search Epce for f. (b) Sennh space kn fa. 
Fig. 4. AM-AM and AM-PM polynomial search space for 
the genetic algorithm. 

The GA optimization teehniqhe is described in four 
steps that follow and is further illustrated in Figure 5: 

1. Generate random population of N members. 
2. Evaluate the fitness of each member in the 

population and sort. 
3. Generate new population. 

(a) Elitism. Select best R members of the 
current population. 

(b) Non-elitism. 
i. Selection. Identify parents by 

stochastic sampling with 
replacement. 

ii. Crossover. Apply uniform crossover. 
iii. Mutation. 

4. Lcop to step 2 and repeat for a new population. 

In the first step, the GA initializes a population table 
of N sets of delta coefficients with values uniformly 
distributed over the search space. Each element in the 
table is indexed by an integer kc[1,2,...,Nl. The next 
five steps of the algorithm are repeated iteratively. We 
index each iteration of the algorithm by the integer i = 
0,1,2... Using this notation, the kth member of the 
population on iteration i is denoted by the following: 

In step 2 of the process, each member is evaluated to 
calculate its fitness. Fitness is defined as the inverse of 
the measured ACLR, thus the desired low ACLR 
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corresponds to a high value of fitness. After the entire 
population has been evaluated for fitness, the N 
members of the population are sorted in descending 
order. 

Fig. 5. Genetic algorithm process with two iterations. 

In step 3, we generate the new population through 
elitism, sampling, crossover and mutation [5]; these are 
called genetic operators. The process of elitism selects 
the best members of the current population and 
duplicates them into the new population. The number 
of members duplicated is determined by the rate of 
elitism as defned by the user. Elitism prevents the 
algorithm from loosing the optimal solution. 

The algorithm now selects two members, k, and k2, 
of the current population to create a member of the new 
population. This is done through stochastic sampling 
with replacement where the probability of selection for 
a member is determined by its fitness. The process is 
repeated for each member of the new population. This 
process can be compared to natural selection in genetic 
studies. 

Following selection of two parents, uniform 
crossover combines the two sets of delta coefficients to 
create a new population member. The new member 
contains elements from both parents which are 
determined by the crossover rate as defined by the user. 
A random binary string Bco is generated in which the 
probability of a 1 in each bit position is equal to the 
crossover rate. The crossover operator creates a new 
offspring through the following logic statement. Other 
forms of crossover are available, but this is the 
preferred embodiment. 

a-.(r+lk4 = [ P,(L h) AND 8, I OR [ .T,(,. L) AND & 1 (7) 

Before the new member can join the population, it is 
subjected to the mutation operator. Similarly to 
crossover, the mutation rate creates a binary mutation 
string which modifies in a limited fashion the new 
members. Mutation prevents the algorithm from 
converging in a local minimum solution. The following 
equation defines the mutation operator. 

.&(z+l. &.a) = .@,(,+I, *,w) XOR &u (8) 

Step 4 returns the process to step 2 where the genetic 
operations are repeated for the N members of the new 
population and every iteration i to achieve acceptable 
levels of ACLR reduction. During periods of 
nonadaptation, the member with the test fitness is used 
by the PD. 

IV. LABORATORY RESULTS 

In this section, we present our laboratory setup and 
results. Figure 6 illustrates our implementation of 
digital pre-distortion. Our forward path uses direct RF 
conversion. However, for our test bed, the spectrum 
analyzer is used to replace the feedback path. The 
Intersil ISL.5217 evaluation board was used to generate 
a three-carrier CDMA2000 waveform, with each 
carrier having a signal bandwidth of 1.23MHz for a 
total bandwidth of 3.75MHz. The CDMA2000 
waveform has a PAR of approximately 12.4dB. This 
waveform was pre-distorted using the Intersil ISL5239 
evaluation board. The ISL5239 is a baseband look-up 
table (LUT) pre-distortion device. The ISL5239 also 
included gain, phase, and offset correction to improve 
image rejection and carrier leakage of the direct 
upconverter. The ISL5239 evaluation board includes 
the Intersil ISL5929 dual DAC and interfaces with the 
Sirenza STQ-2016 direct upconverter to generate the 
881MHz pre-distorted RF waveform. The waveform 
was driven by a Mini-Circuits ZHI-ICUO amplitier. The 
waveform was then amplified by a Sirenza SW-0189 
PA. The output was fed back to a computer through an 
Agilent E4404B Spectrum Analyzer. The data was 
processed in Matlab to implement a LUT solution in 
the ISL5239. 

Fig. 6. Laboratory setup of the closed-loop adaptive digital 
pre-distortion system. 

The genetic operators were defined by an elitism rate 
of 20%, a mutation rate of 3%, and a crossover rate of 
50%. Our initial populations were comprised of N=25 
members and the simulations were allowed to run over 
i=20 iterations. Figure 7 shows the AM-AM and AM- 
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PM characteristic curves of the LUT after the algorithm 
has converged. The PldB of the PA is -3SdB thus both 
tables remain constant up to an input power of 
approximately -4dBm after which correction is applied. 

Fig. 7. AM-AM and AM-PM predistortion curves for the 
laboratory PA. 

Figure 8 shows the PA output with and without pre- 
distortion. The PA output power is held constant for 
both cases. Without linearization the ACLR is 
measured to be 3ldBc. This improves to 46dBc with 
the pre-distortion defined by the GA. 

Fig. 8. PA performance with and without digital pre- 
distortion. 

Figure 9 shows the GA adaptation curves 
demonstrating the progress of the algorithm as a 
function of the “timber of iterations. The results shown 
prior to iteration 0 indicate ACP measurements without 
pre-distortion. The uppermost line shows the average 
adjacent channel power for the population. The second 
line corresponds to the GA optimal solution. Even 
though the adjacent channel power decreases for each 
iteration the optimal solution does not remain constant 
due to varying input power levels. Finally, the lowest 
line represents the minimum possible adjacent channel 
power as defined by the noise floor of the system. 

As explained in [l], the output noise floor is lower 
for a PA operating in compression than for a PA 
operating in its linear region. Our results reflect that 

optimum ACLR performance is achieved when the PD 
gain is at its maximum level and the resulting output 
noise floor is at a minimum. The increase in PD gain 
also causes the PA to operate with higher efficiency. 
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Fig. 9. Average, optimal, and lower limit for adjacent 
channel power for each iteration. 

V. CONCLUSION 

In this paper, we used genetic algorithms with digital 
pre-distortion to linearize a laboratory PA. We 
presented results showing that a narrow-band feedback 
technique was able to achieve approximately 15dB of 
ACLR reduction on a 3.75MHz bandwidth three- 
channel CDMA2000 waveform. We presented the 
hardware architecture based on the ISL5239 digital 
pre-distortion linearizer. This solution offers high 
performance and is an attractive alternative to the more 
expensive feed-forward and wide-band feedback 
techniques. 
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